Canonical vector heights on K3 surfaces with Picard number three - An argument for nonexistence

نویسنده

  • Arthur Baragar
چکیده

In this paper, we investigate a K3 surface with Picard number three and present evidence that strongly suggests a canonical vector height cannot exist on this surface.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Canonical Vector Heights on K3 Surfaces with Picard Number Three – Addendum

In an earlier paper by the first author, an argument for the nonexistence of canonical vector heights on K3 surfaces of Picard number three was given, based on an explicit surface that was not proved to have Picard number three. In this paper, we fill the gap in the argument by redoing the computations for another explicit surface for which we prove that the Picard number equals three. The conc...

متن کامل

K3 surfaces with Picard number three and canonical vector heights

In this paper we construct the first known explicit family of K3 surfaces defined over the rationals that are proved to have geometric Picard number 3. This family is dense in one of the components of the moduli space of all polarized K3 surfaces with Picard number at least 3. We also use an example from this family to fill a gap in an earlier paper by the first author. In that paper, an argume...

متن کامل

Polyhedral Groups and Pencils of K3-Surfaces with Maximal Picard Number

A K3-surface is a (smooth) surface which is simply connected and has trivial canonical bundle. In these notes we investigate three particular pencils of K3-surfaces with maximal Picard number. More precisely the general member in each pencil has Picard number 19 and each pencil contains four surfaces with Picard number 20. These surfaces are obtained as the minimal resolution of quotients X/G, ...

متن کامل

Canonical Heights, Invariant Currents, and Dynamical Systems of Morphisms Associated with Line Bundles

We construct canonical heights of subvarieties for dynamical systems of several morphisms associated with line bundles defined over a number field, and study some of their properties. We also construct invariant currents for such systems over C. Introduction Let X be a projective variety over a field K and fi : X → X (i = 1, · · · , k) morphisms over K. Let L be a line bundle on X, and d > k a ...

متن کامل

Self-correspondences of K3 surfaces via moduli of sheaves and arithmetic hyperbolic reflection groups

An integral hyperbolic lattice is called reflective if its automorphism group is generated by reflections, up to finite index. Since 1981, it is known that their number is essentially finite. We show that K3 surfaces X over C with reflective Picard lattices can be characterized in terms of compositions of their self-correspondences via moduli of sheaves with primitive isotropic Mukai vector: Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 73  شماره 

صفحات  -

تاریخ انتشار 2004